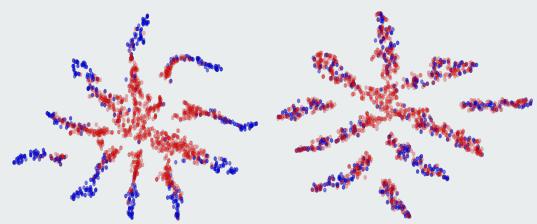
Unsupervised Domain Adaptation by Backpropagation

Chih-Hui Ho, Xingyu Gu, Yuan Qi



Outline

- Introduction
- Related works
- Proposed solution
- Experiments
- Conclusions

Problems

Deep network: requires massive **labeled** training data.

Labeled data:

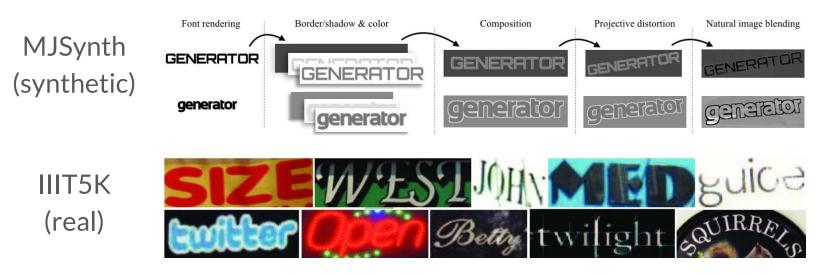
- Available sometimes:
 - Image recognition
 - Speech recognition
 - Recommendation
- Difficult to collect sometimes:
 - \circ Robotics
 - Disaster
 - Medical diagnosis
 - Bioinformatics

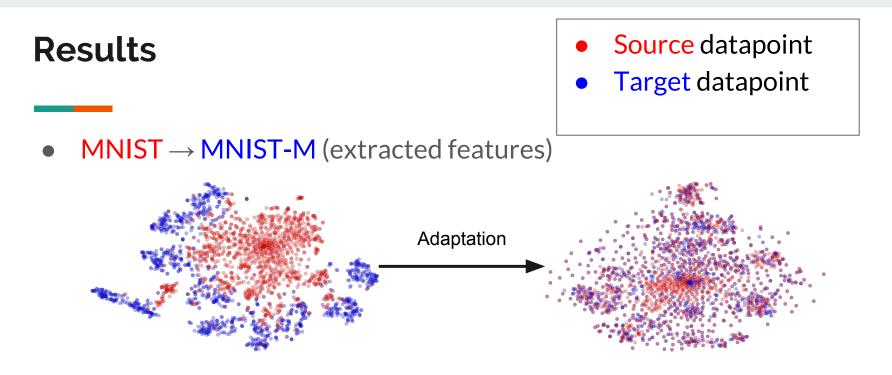
Problems

Test time failure: distribution of actual data is different from training data.

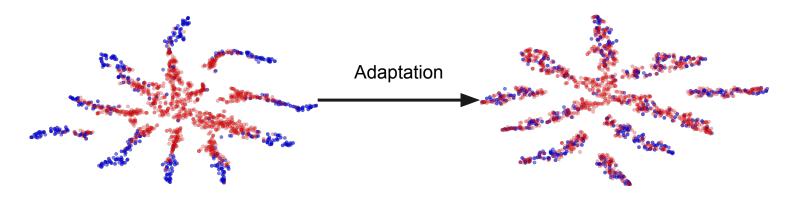
Example: Model is

- Trained on synthetic data (abundant and fully labeled), but
- Tested on real data.





• SYN NUMBERS → SVHN (label classifier's last hidden layer)



Objective

Given:

- Lots of **labeled** data in the **source** domain (e.g. synthetic images)
- Lots of **unlabeled** data in the **target** domain (e.g. real images)

Domain Adaptation (DA):

In the presence of a *shift* between source and target domain, Train a network on *source* domain that performs well on *target* domain.

Objective

Example: Office dataset

• Source:

Amazon photos of office objects (on white background)

• Target:

Consumer photos of office objects (taken by DSLR camera / webcam)

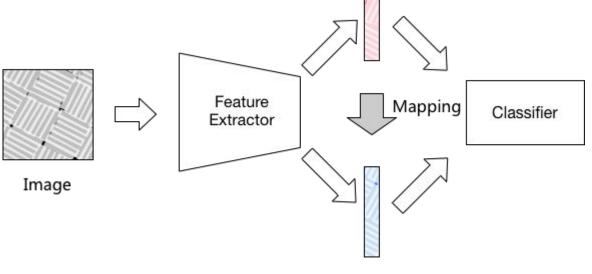
DSLR

Webcam

Previous Approaches - DLID

Deep Learning by Interpolating between Domains

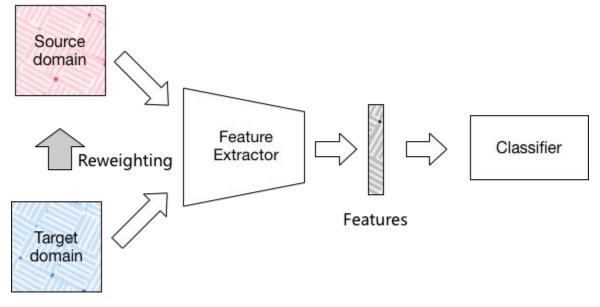
- Feature transformation mapping source into target.
 - Train feature extractor layer-wise.
 - Gradually replacing source samples with target samples.



Previous Approaches - MMD

Maximum Mean Discrepancy (measures domain-distance)

- **Reweighting target** domain images.
 - **Distance** between **source** and **target** distributions.
 - Explicit distance measurement (e.g. kernel Hilbert space).



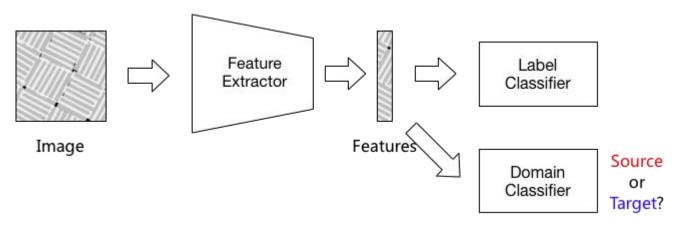
Image

Proposed Solution - Deep Domain Adaptation (DDA)

Standard CNN + **domain classifier**.

- An **implicit** way to measure similarity between **source** and **target**.
 - If domain classifier performs **good**: **dissimilar** features.
 - If domain classifier performs **bad**: **similar** features.
- Objective: feature is **best** for label classifier, and

worst for domain classifier.



Improvement

	Previous approaches	Proposed solution
Measurement of similarity between domains	Explicit (distance in Hilbert space)	Implicit (performance of domain classifier)
Training steps	Separate feature extractor and label classifier	Jointly trained by backpropagation
Architecture	Complicated	Simple (standard CNN + domain classifier)

- Notation
 - $\circ x_i$:training samples (from both source and target domain)
 - \circ y_i : class label (only source domain has labels)
 - \circ d_i : 0 (source domain) or 1 (target domain)
- x_i in source domain has $d_i = 0$ and y_i
- x_i in target domain has $d_i = 1$ (target domain has no label)

- G_f : feature extractor
- G_y : label predictor
- *G_d* : domain classifier

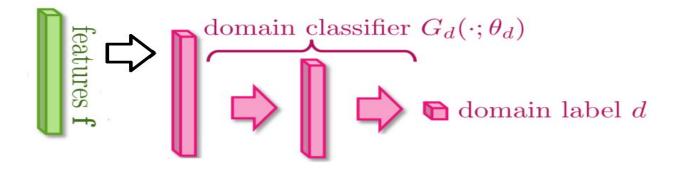


Proposed Solution – Label predictor

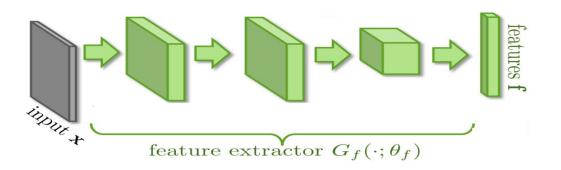
- θ_y denotes the parameters in label classifier
- Given a feature, label classifier tries to predict the label of the feature
- Multi-class classification task
- The loss is categorical cross entropy
- θ_y minimize the loss the label classifier
- θ_y is updated as $\theta_y \leftarrow \theta_y \mu \frac{\partial L_y^i}{\partial \theta_y}$
- μ is the learning rate

Features label predictor
$$G_y(\cdot; \theta_y)$$

- θ_d denotes the parameters in domain classifier
- Given a feature, domain classifier tries to predict whether the feature comes from source or target domain
- Binary classification task
- The loss is binary cross entropy
- θ_d minimizes the loss the domain classifier
- θ_d is updated as $\theta_d \leftarrow \theta_d \mu \frac{\partial L_d^i}{\partial \theta_d}$
- μ is the learning rate



- θ_f denotes the parameters in feature extractor
- Given an image, feature extractor generates a deep feature for the image
- θ_f minimizes the loss the label classifier
- θ_f maximize the loss the domain classifier θ_d is updated as $\theta_f \leftarrow \theta_f \mu \left(\frac{\partial L_y^i}{\partial \theta_f} \lambda \frac{\partial L_d^i}{\partial \theta_f} \right)$
- μ is the learning rate
- The parameter λ controls the trade-off between the two objectives

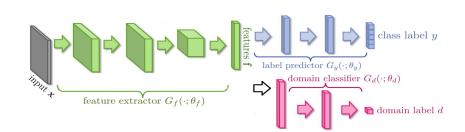


Consider an image from source domain

$$E(\theta_f, \theta_y, \theta_d) = \sum_{\substack{i=1..N\\d_i=0}} L_y \left(\underbrace{\hat{y}_i}_{i=1..N}, y_i \right) - \lambda \sum_{i=1..N} L_d \left(\underbrace{\hat{d}_i}_{i=1..N}, \underbrace{\hat{d}_i}_{i=1..N}, y_i \right) = \sum_{i=1..N} L_d \left(\underbrace{\hat{d}_i}_{i=1..N}, \underbrace{\hat{y}_i}_{i=1..N}, \underbrace{$$

Consider an image from target domain

$$E(\theta_f, \theta_y, \theta_d) = \lambda \sum_{i=1..N} L_d \left(G_d(G_f(\mathbf{x}_i; \theta_f); \theta_d), \mathcal{Y}_i^d \right)$$



$$E(\theta_f, \theta_y, \theta_d) = \sum_{\substack{i=1..N\\d_i=0}} L_y \left(G_y(G_f(\mathbf{x}_i; \theta_f); \theta_y), y_i \right) - \lambda \sum_{\substack{i=1..N\\d_i=0}} L_d \left(G_d(G_f(\mathbf{x}_i; \theta_f); \theta_d), y_i \right) = \sum_{\substack{i=1..N\\d_i=0}} L_y^i(\theta_f, \theta_y) - \lambda \sum_{\substack{i=1..N\\i=1..N}} L_d^i(\theta_f, \theta_d)$$

$$(\hat{\theta}_f, \hat{\theta}_y) = \arg\min_{\theta_f, \theta_y} E(\theta_f, \theta_y, \hat{\theta}_d)$$

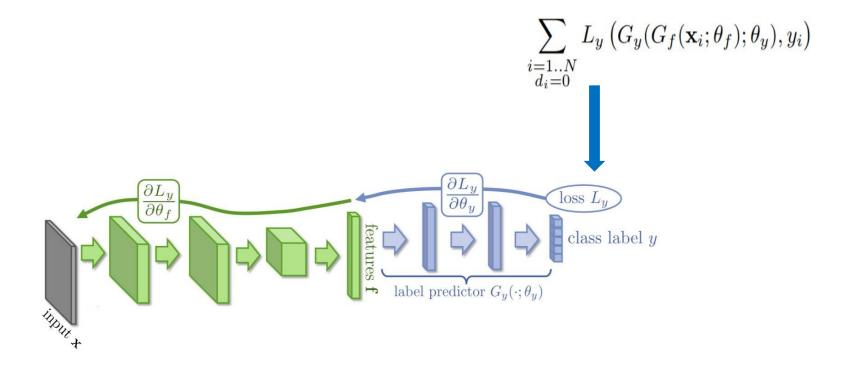
 $\hat{\theta}_d = \arg\max_{\theta_d} E(\hat{\theta}_f, \hat{\theta}_y, \theta_d).$

• At saddle point

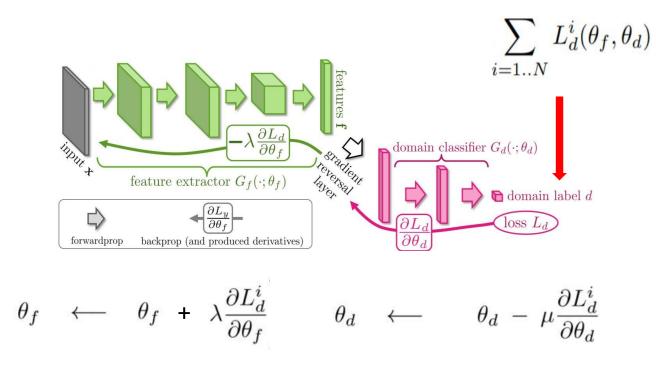
- $\circ \theta_d$ minimizes domain classification loss
- $\circ \theta_{\gamma}$ minimizes label prediction loss
- $\circ~\theta_f$ minimizes label prediction loss and maximize domain classification loss

$$E(\theta_f, \theta_y, \theta_d) = \sum_{\substack{i=1..N\\d_i=0}} L_y^i(\theta_f, \theta_y) - \lambda \sum_{i=1..N} L_d^i(\theta_f, \theta_d)$$

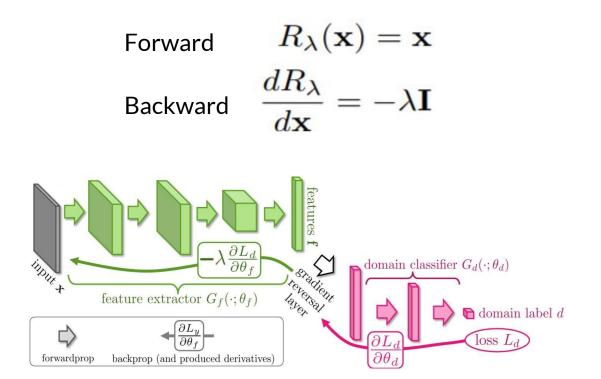
- How to backpropagate the label classifier loss?
- Consider only the upper architecture
- This is typical backpropagation



- How to backpropagate the domain classifier loss?
- Consider only the upper architecture
- Define gradient reversal layer (GRL)



- Forward : GRL is an identity transformation
- Backward: GRL takes gradient from subsequent level, multiply by λ and pass it to previous layer
- Treat GRL as a pseudo function $R_{\lambda}(x)$



- After training, the label predictor can be used to predict labels for samples from either source or target domain
- Experiment results

Source & Target Datasets

MNIST

$\textbf{MNIST} \rightarrow \textbf{MNIST-M}$

MNIST-M

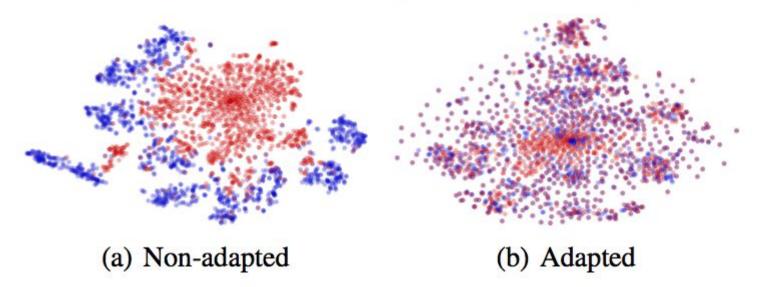
SOURCE	MNIST
TARGET	MNIST-M
	.5749

METHOD	SOURCE	MNIST	
WIETHOD	TARGET	MNIST-M	
SOURCE ONLY		.5749	
SA (FERNANDO ET AL., 2013)		.6078 (7.9%)	
PROPOSED APPROACH		.8149 (57.9%)	
TRAIN ON TARGET		.9891	

$MNIST \rightarrow MNIST-M$

MNIST-M

MNIST \rightarrow MNIST-M: top feature extractor layer



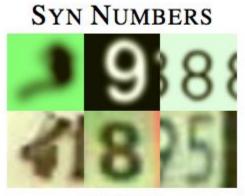
SYN NUMBERS

Synthetic numbers \rightarrow SVHN

a		тт	
S	V.	н	N

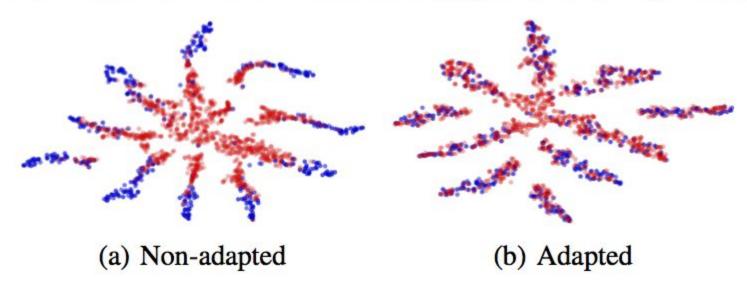
Method	SOURCE	MNIST	SYN NUMBERS
METHOD	TARGET	MNIST-M	SVHN
SOURCE ONLY		.5749	.8665
SA (FERNANDO ET AL., 2013)		.6078 (7.9%)	.8672(1.3%)
PROPOSED APPROACH		. 8149 (57.9%)	. 9048 (66.1%)
TRAIN ON TARGET		.9891	.9244

Synthetic numbers \rightarrow SVHN



SVHN

SYN NUMBERS \rightarrow SVHN: last hidden layer of the label predictor



$\textbf{MNIST} \leftrightarrow \textbf{SVHN}$

MNIST

The two directions (MNIST \rightarrow SVHN and SVHN \rightarrow MNIST) are not equally difficult.

SVHN is more diverse, a model trained on SVHN is expected to be more generic and to perform reasonably on the MNIST dataset.

Unsupervised adaptation from MNIST to SVHN gives a failure example for this approach.

SVHN

$\text{SVHN} \rightarrow \text{MNIST}$

MNIST

METHOD	SOURCE	MNIST	SYN NUMBERS	SVHN
METHOD	TARGET	MNIST-M	SVHN	MNIST
SOURCE ONLY		.5749	.8665	.5919
SA (Fernando et al., 2013)		.6078 (7.9%)	.8672(1.3%)	.6157 (5.9%)
PROPOSED APPROACH		.8149 (57.9%)	.9048 (66.1%)	.7107 (29.3%)
TRAIN ON TARGET		.9891	.9244	.9951

SYN SIGNS

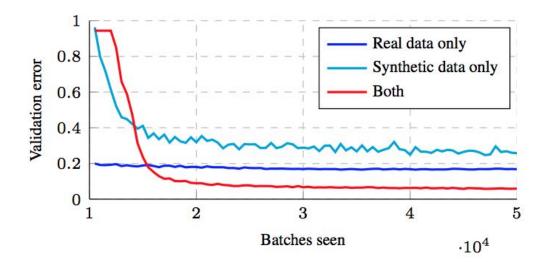
GTSRB

Synthetic Signs \rightarrow GTSRB

SOURCE	MNIST	SYN NUMBERS	SVHN	SYN SIGNS
TARGET	MNIST-M	SVHN	MNIST	GTSRB
	.5749	.8665	.5919	.7400
al., 2013)	.6078~(7.9%)	.8672(1.3%)	.6157~(5.9%)	.7635~(9.1%)
СН	. 8149 (57.9%)	. 9048 (66.1%)	.7107 (29.3%)	. 8866 (56.7%)
	.9891	.9244	.9951	.9987
	Target Al., 2013)	TARGET MNIST-M .5749 AL., 2013) .6078 (7.9%) CH .8149 (57.9%)	TARGETMNIST-MSVHN.5749.8665AL., 2013).6078 (7.9%).8672 (1.3%)CH.8149 (57.9%).9048 (66.1%)	TARGETMNIST-MSVHNMNIST.5749.8665.5919AL., 2013).6078 (7.9%).8672 (1.3%).6157 (5.9%)CH.8149 (57.9%).9048 (66.1%).7107 (29.3%)

Synthetic Signs \rightarrow GTSRB

This paper also evaluates the proposed algorithm for semi-supervised domain adaptation, i.e. when one is additionally provided with a small amount of labeled target data.



Office dataset

Метнор	SOURCE	Amazon	DSLR	WEBCAM
METHOD	TARGET	WEBCAM	WEBCAM	DSLR
GFK(PLS, PCA) (GONG ET AL., 2012)		$.464\pm.005$	$.613 \pm .004$	$.663 \pm .004$
SA (Fernando et al., 2013)		.450	.648	.699
DA-NBNN (TOMMASI & CAPUTO, 2013)		$.528 \pm .037$	$.766\pm.017$	$.762 \pm .025$
DLID (S. CHOPRA & GOPALAN, 2013)		.519	.782	.899
DECAF ₆ Source Only (Donahue et al., 2014)		$.522\pm.017$	$.915\pm.015$	—
DANN (GHIFARY ET AL., 2014)		$.536\pm.002$	$.712 \pm .000$	$.835\pm.000$
DDC (TZENG ET AL., 2014)		$.594\pm.008$	$.925\pm.003$	$.917\pm.008$
PROPOSED APPROACH		$.673 \pm .017$	$.940\pm.008$	$.937 \pm .010$

Conclusions

- Proposed a new approach to unsupervised domain adaptation of deep feed-forward architectures;
- Unlike previous approaches, this approach is accomplished through standard backpropagation training;
- The approach is scalable, and can be implemented using any deep learning package.